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Abstract—A general analytical method for the dynamic response of an elastic plate with arbitrarily-
disposed voids is proposed by means of the extended Dirac function. The discontinuous variation
in rigidity of the plate due to the voids is expressed under the category of a continuous function by
the use of the extended Dirac function. The governing equation of motion for a damped plate with
voids is formulated without modifying the rigidity of the plates. The treatment is independent of
the equivalent plate analogy. First, natural frequencies for a plate with voids are presented by means
of the Galerkin method. The validity of the proposed natural frequencies is shown for simply-
supported and clamped plates with voids through a comparison with both the results of an experi-
ment using acrylic plates and the results obtained from the FEM code NASTRAN. Sccond, a
dynamic analysis method based on the linear acceleration method is presented from the governing
equation. The closed-form approximate solutions for a damped plate with voids are proposed for
general and harmeonic external loads. The validity of the closed-form approximate solutions pro-
posed here is shown by a compitrison with the numerical results obtained from the linear acceleration
method and NASTRAN.

NOTATION

the value of the integrated natural functions

the widths in the x and y directions of the i, jth void, respectively
damping coetlicient

extended Dirac functions

D, flexural rigidity for a solid plate without voids
d(x, y) rigidity ratio of plates with voids to plates without voids
E Young's modulus

Fo(m m; i), F,(nA,jf) integral valucs

Sown natural functions

Sowir Sy x and y components of £,

h, total thickness of plate

h* damping constant including the effect of voids
h damping constant exctuding the effect of voids
h practical thickness of plate

h,, height of the i, jth void

1.1, spian lengths in the x and yp directions

P external lateral loads

Q. Cua integral values of the external loads

w lateral deflection on the middle surface

2 ratio of span lengths /, to /,

S(x—x,). 8(y—y,) Dirac functions

O Kronecker delta

v Poisson’s ratio

p mass density of a plate with voids

(L 2 functions of time

s W natural frequencies of undamped and damped plates with voids, respectively
w, ith natural frequency of voided plates

wy, ith natural frequency of solid plates

frequency of external loads.

1. INTRODUCTION

$3.00+ .00
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For reasons of lightness and structural efficiency and in order to guarantee enough space
for equipment, plates with voids are often used in floors, roofs, bridges, etc. There are many
papers discussing the analytical method for static plates with voids [for example, Holmberg
(1960), Sawko and Cope (1969). Crisficld and Twemlow (1971), Cope et al. (1973), Elliott
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Fig. 1. Coordinates of a rectangular plate with voids.

(1978). Elliott and Clark (1982) and Cope and Clark (1984)]. However. a general analytical
method for plates with arbitrarily-disposed voids has not been established. The author
(Takabatake, 1991) has presented a general analytical method for such a static plate with
voids by the use of an extended Dirac function. The extended Dirac function is defined as
a function in which the Dirac function exists continuously in a prescribed region. For the
current problem, the extended Dirac function has a value in the region where the voids
exist, and replaces the discontinuous variation in the rigidity of the plates due to the voids
with a continuous function ; it is therefore effective in presenting a general analytical method
for plates with arbitrarily-disposed voids. The theory of plates with voids is formulated
without modifying the rigidity of the plates. This treatment is independent of the equivalent
plate analogy. The author (Takabatake, 1987, 1988) has demonstrated the effectiveness of
the extended Dirac function for analyses of tube structures with floors and of lateral
buckling of I beams stiffened with stiffencrs.,

Dynamic problems for a plate without voids were studied by Chu and Hermann (1956)
and Gorman (1982). The analysis of a dynamic plate with arbitrarily-disposed voids is
based on FEM, whereas the general analytical method is scarce.

The purpose of this paper is to present a general dynamic analysis of the dynamic
responses of a rectangular plate with arbitrarily-disposed voids. First, the governing equa-
tion of motion for a dumped plate with voids is presented by modifying the author's result
(Takabatake, 1991) for static plates with voids. The discontinuous variation in the rigidity
of the plates duc to the voids is expressed as a continuous function by means of the extended
Dirac function. Sccond, the natural frequencies of a rectangular plate with voids are
presented by means of the Galerkin method. The proposed solutions are examined by
comparing them with experimental results using acrylic plates and with results obtained
from the FEM code NASTRAN for simply-supported and clamped plates with voids.
Third, the forced vibrations of u damped plate with voids are presented by the use of the
linear acceleration method. For practical use, the approximate solutions for a plate with
voids, subjected to general and harmonic external toads, are proposed in closed form. Last,
the validity of the closed-form solutions proposed here is shown by comparing them with
the numerical results obtained using the lincar acceleration method and using the FEM
code NASTRAN.

2. FUNDAMENTAL EQUATION OF PLATES WITH VOIDS

Consider a rectangular plate with arbitrarily-disposed voids, as shown in Fig. 1. The
plate is assumed to bc composed of an isotropic material. Assume that each void is a
rectangular parallelepiped whose ridgelines are parallel to the x- or y-axis and which is
disposed symmetricaily with respect to the middle plane of the plate, as shown in Fig. 2.
The position of the i, jth void is indicated by the coordinate value (x,. »;) of the midpoint
of the void ; the widths in the x and y directions of the void are b,,; and b,,, respectively;
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middile surface of plate

Fig. 2. Detail of a void.

and its height is &, ;. The size and position of each void are arbitrary except for the above-
mentioned assumptions.

Consider the bending problems of an isotropic plate with voids in small deformations.
Since for structures like floors, roofs and bridges the height of the voids is relatively small
in comparison with the thickness of the plate, the Kirchhoff-Love plate theory may be
assumed to be valid for the current problem. Tt is also assumed that deflections of the
supporting ends of the plates with voids do not occur when external loads are applied
dynamically. Adding the viscous damping term to the author's theory (Takabatake, 1991)
regarding the static analyses of plates with voids, the equation of motion of a rectangular
plate with voids can be written as:

[)II(X. }’) W + C'i' + D!)[dw..u + de.y,v].xx + Do[dw,yv + Wlw.xx],vy + 2( l - V) D() [‘IW..rr]..t,r = I’(-"‘ .V~ ’)
(1)

in which D, is the flexural rigidity for a solid plate defined as EA3/12(1 —v?); ¢ is a damping
cocfficient ; and the thickness, fi(x, y), and the rigidity ratio, d(x, y), are given by :

h(x,y) = hy [l -y ¥ h,JD(.r—,v,)D(y—)',)] (2
i=lj=
dx,y) =1=-Y Y 2,D(x—x)D(y—y). 3)

IENVEN

Here hq is the total thickness of the plates, and the notations D(x—x,) and D(y—y,) are
the extended Dirac functions defined as

b b.
| forx,— X <x<x+ ——5—/
D(x—x) = 2 2
0 for all others
4)

1 fory,——-2-—<y<y,+—2—

0 for all others.

D(y—y) =

The notation a, is defined as
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3. FREE TRANSVERSE VIBRATIONS OF A PLATE WITH VOIDS

The method of separation of variables is employed. assuming that
w(x, v, 1) = W(x. v)®(1) (6)

in which #'(x. y) is a function of x and v, ®(¢) is a function of time ¢, Applying eqn (6) to
the equation for free transverse vibrations obtained from eqn (1). the two equations satisfied
by H(x. y) and ®(1) follow:

G+’ =0 (7)

w’ph(x.v)

D. =0 (8)

[d’V..\'\'].\ ¥ + [‘I”/.I‘I‘].rr + V[(IIV" r].\'\' + V[d”/. vy ].rr + 2( I - V)[d;‘/"‘_..]‘_‘,_v -

in which « is a constant.
The natural frequencics of a plate with voids are presented by means of the Galerkin
mcthod. H(x, ) is expressed by a power series expansion as follows:

W)=Y Y W fuley) )

mo=ln~1

in which W, are the unknown cocllicients, £, (x, y) are functions satisfying the specified
boundary conditions of the plates. The Galerkin equations of cqn (8) can be written as

Jl V:uu : Z Z ”//nu[" ln'uinm - ABriuimn] =0 ( IO)

m=tna=|

in which the notations A, Baims and 4 arc defined as

1,
/' i — j J { [‘l/;nn_ (Y ],\ v + [l,//;ml.r r].r ¥ + V[‘[/;nn._r l'].,rt
0 (]

+v [(_I/,.,,,,. t (].rr + 2( - V) [‘l/mn..r,r].x_v }frﬁﬁ d.'(' d)' ( I )

i A
Bn'uinm = IJJ J‘ [l - z Z /’:./D(-V”-\':)D(,V_}'j)]fmnfmﬁ dx dy (Iz)
¢ Jo Jo f et

AN

2 ,‘14
;= (.’,f_.!Df'__’_:. (13)
0

where the integral calculation including the extended Dirac functions, D(x—x,) and
D(y—y,). is shown in the Appendix. Equations (10) are a system of linear, homogeneous,
simultancous algebraic equations with respect to the unknown displacement coefficients
W.,.,. The coctlicients B,,,.. appear in diagonal and non-diagonal terms due to the existence
of the voids. Solving eqns (10) as eigenvaluc problems for 4, the ith natural frequency, w..
of a plate with voids, corresponding to the ith value, 4, of 4, is determined from eqn (13)
as
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D,
[ Do 14
iy (14

The natural frequencies of a plate with voids are now obtained from numerical com-
putations. Then, approximate expressions to directly obtain the natural frequencies are
considered. Although the natural frequencies are affected by the diagonal and non-diagonal
terms in the square matrices 4,;m, and B,;.... the main behavior is now dominated by the
diagonal terms. Hence, taking only the diagonal terms in 4.4, and B, into consideration,
eqns (10) become of an uncoupled form. Thus the approximate values of 4 are obtained as

Is

w; = /4

f—

{

14

anmn
b= (15)

A mnmn

The approximate value for the ith natural frequency is obtained by substituting this into
eqn (14).
For simply-supported plates using the following natural functions:

Son(X,¥) = sin ”‘Iﬂ sin '—';f"—' (16)

the cocflicients A, a0d Bime are

. . n 2R
Amrimn =T m-+ & (smm(smi

- anta, | Fo(m it OF, (n i) | m* + anl
! : o

IERVENI

2
-2m I:mz + (S) ][mF_ (i ) = mEF (m i D F (05 )

3
=2 [('_') +m? ﬁ:”:ﬁ F(na;j)— '-’F“.,.(n. i ;ﬁ] F. (m. i 0)
a alla a

b ” : b - - - - -
+ [m' +v (o;) ] {{m?® + 0V F (i ) = 2mmE  (monit ), (0,75 )

e[ (e LG (

+2(1 - V)mg (mF (m, ;i) = mF  (m ;) [; F.(ni )+ Z Fonn :/)]]

.

) ] Fo.(niiij)— 22 2 Fo.(n.n :ﬁ} Foo(m it i)

R | =

(17)
Bifnimn = 6#'""611"—4 z z (%) Fr.u('"' ”-l;i)l:y.u(n'ﬁ:j) (|8)
0

imtjw |

in which « = [,/I,; 8,4 and 9, are the Kronecker deltas; and the notations F,(m, ;1)
and F,.(m, m ;i) are defined as
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. [ mrx\ n'm.\'\)
i " o | sinl —= ) sin{ —=
{Fm(m.m::)} ~ LJUMW 3 I —
Feeolm i) L=, mnx mnx
l, 1,

1 cos (m—nm)nx; sin (m—n‘z)nh‘,i,( PRy l (b‘,,) 5o

= (m—nm)rn [, 2, k
1 _Am+smynx, . (m+rmb,, 19)
+ (m+nmn €0’ L, l 2, -

The notations F,,,(n. 7i:j) and F,..(n, Ai; j) were obtained by making the substitutions m —
nom—A x,—y.b, —b, and [, -1/ in eqn (19). On the other hand. the natural
frequencies for clamped rectangular plates with voids were obtained similarly by using
suitable natural functions for clamped solid plates.

4. NUMERICAL RESULTS FOR NATURAL FREQUENCIES

The natural frequencies for a plate with voids have been presented by means of the
Galerkin method. In order to examine the natural frequencics proposed here, numerical
computations were carried out for three cases, as shown in Table 1. All the voids have the
same cross-section spaced equally. Figures 3-5 and 6-8 show the first natural frequencics
for simply-supported and clamped plates with voids, respectively, in which Poisson’s ratio,
v, is 0.17; the width-span ratios, b, /l, and h,, /1., of the £, jth void take the values 0.05,
0.10 and 0.15; the ratios h,,/h, change from 0 to 0.9 ; and the aspect ratio, £ /1,, is always
1.0. The valuc at 4, ,/h, = 0 indicates the value for normal solid plates without voids. In
these figures cach first natural frequency, @y, is divided by the first natural frequency, wy, ),
of the solid plates. The numerical results show that the differences between the results
obtained using cqn (10) and the approximale results obtained using eqn (15) are too small
to plot and are negligible in practical use. The results obtained from the proposed theory
show excellent agreement when compared with results obtained from the FEM code
NASTRAN, in which 22 x 22 finite ¢lements are used. However, the ratio #1,,//, in these
figures must be restricted to being smaller than 0.6 duc to the use of the Kirchhoff-Love
assumption made here. In this caleulation, the natural functions for fixed plates with voids
use, for the sauke of computational simplicity, the following approximate expressions

Table 1. Lists of isotropic rectangular plates with voids

h. . b s b . !
PLANE secTion | [Pxisg [Pyici fo by
e .Ef TxJ. TY tx
|.-0 — h.l
1 il BT =g
- x
vl “Eﬁbi«' ol ,O—anau oslo1 los |10
! - bli.j
4
&'*l vt |
z |otseaase) = *los]or |10 1o
——f | -—
bxn.j
k»‘-—l._..
3 N LB EECEE g S R FY R
ol ) —
Buij
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Fig. 3. The first natural frequency of a simply-supported plate with voids (Type 1).
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Fig. 4. The first natural frequency of a simply-supported plate with voids (Type 2).
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Fig. 5. The first natural frequency of a simply-supported plate with voids (Type 3).
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Fig. 6. The first natural frequency of a clamped plate with voids (Type ).
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Fig. 7. The tirst natural frequency of i clamped plate with voids (Type 2).
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Fig. 8. The first natural frequency of a clamped plate with voids (Type 3).
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Fig. 9. Convergence of finite elements with mesh refinement.

= sin [ =Y sin (77 sin (%) i (7
Som(X. V) —sm<l‘>sm( i )sm(lI)sm( I ) 20)

It the well-known exact natural functions for normal plates are used, the results of the
numerical computation for fixed plates with voids will be improved.

Figure 9 shows the convergence of the finite clements with mesh refinement on the
natural frequencies of the simply-supported plate with voids, named Type 3, and the solid
plate. Tt follows that the 22 x 22 clements used in the above comparison are appropriate
for good convergence.

FFor higher natural frequencies the proposed theory also shows good agreement with
the results obtained from NASTRAN. The higher natural frequencics increase in proportion
to the increase in the ratio /1, /h,. The behavior is the sume as the first natural frequency
for h,,/hy smaller than 0.6, except for the second, fourth, cte. natural frequencics of simply-
supported plates and fixed plates named Type 1. These differences are caused when the
natural modes of Type | are asymmetric with respect to a line given by y = /[,/2 which
passes through the midspan, as shown in Fig. 10, For these modes of Type | the position
of the voids is such that they occur on a part of, but not throughout, the span of the plate
with respect to the line p = [/2. Therefore, the effects of the voids on these natural modes
cancel cach other, and the increment of these natural frequencies due to the voids is less
than for the other modes of Type | and other types. Figure 11 shows the second natural
frequency for simply-supported plates with voids.

5. RELATIONSHIPS BETWEEN THEORETICAL RESULTS AND EXPERIMENTAL RESULTS
FOR NATURAL FREQUENCIES

In order to examine experimentally the theory proposed here, experiments for acrylic
plates with voids were carried out for both simply-supported and clamped cascs.

The experimental equipment is shown schematically in Fig. 12. The span lengths
I, =1,=30 cm (11.81 in). The matcrial constants arc Young's modulus £ = 32,700 kgf
cm “? (465,100 1b in %), Poisson's ratio v = 0.34, and mass density p = 1.199x 10 “* kgf's*
cm~* (1.096 x 10 """ Ibs® in ~*). The natural frequencics are calculated from the dynamical
deflections at the midpoint of the specimens. The relationships for the first natural frequency
between the experimental results and the theoretical results proposed here are shown in
Table 2. It shows that the proposed theory agrees well with the experimental results. Thus.
although the specimens are insufficient in number, it is shown that the proposed theory can
apply in practice to plates with voids.



888 H. TAKABATAKE

T
TYPE 1 i TYPE 2 f
|
X 7 X
\:\‘N“‘v «,f"a'"; ’.;::\“§m\
27N/ "
1 -t S N
ssastite i el st et
Sge "'o‘ S
&,
. TN
W
LTI
\.‘._-_"'o,l'ﬂll///{/’,',’fo,‘o,‘.‘\‘!‘
.u,,,;{;l/lgl,{;g.:-‘
Ny -
o X
“ip
v i,
> 40%
3 ‘:0’0"/”//,""
S “y
‘\_\!‘,:o:l',l'lll/,l’,”l',‘ 55
N\
NY
PO AT
'4/’!'..“ ™ AROOAN
o A, | <k
N AN A
NI A
"o‘:‘t\“ X
0 BRI
s | TR, | S
, W,
\\."1"!'

Fig. 10. Frequency modes of simply-supported plates with voids,
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Fig. 1. The sccond natural frequency of a simply-supported plate with voids (Type 1).

6. FORCED VIBRATIONS OF PLATES WITH VOIDS

Free transverse vibrations of a plate with voids have been presented. Next, forced
vibrations of plates with voids will be considered. The general solution of eqn (1) is assumed
to be of the form
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Fig. [2. Schematic diagram of the experimental equipment.

Table 2. Relationships between the theoretical and experimental results

First natural frequencies

Type  h,lhy b, b . Simply-supported plate  Clamped plate
Experiment 7208 rad s~ 12963 rad s~
0 0 0 0  Theory 666.5 rad s~ 1257.8 rad s~
Error 1.5% 29%
Experiment 7463 rad s~ 13448 rad s~
1 0.33 0.1 0.5  Theory 7382 rads™! 14394 rad s~'
Error 1.0% ~7.0%
Experiment 7557 rad s~ 13209 rad s !
2 0.33 0.1 1.0 Theory 7585 rads ! 1464.7 rad s~
Error -0.4% —-10.8%
Experiment 7290 rad s 13990 rad s !
3 0.33 0.1 0.1 Theory 7239 rad s’ 14232 rad s !
Error 0.7% —-1.7%

Error = (Experiment — Theory)/(Experiment) ;2 = 1/l = 1.0;{, = 30 cm; and by = 0.6 cm

W) = Y Y S )P (1) @n

m=ln=1

in which @,,(r) are unknown functions of time ; and the functions f,,,(x, y) are the natural
functions satisfying both the differential eqns (8) and the specified boundary conditions at
the ends of the plate. Substituting eqn (21) into egqn (1) and using the eqn (8), we have

T T Sanle )OR 1) By (1) + By (1) + ph (X, 1) Ppra (D] = pLx. 3, 0). (22)
maln=|
Since the thickness /i(x. y) is a function of x and y, eqn (22) cannot be transformed into an
uncoupled form by means of the orthogonality relations for natural functions. Therefore,
eqn (22) will be solved by either numerical computation based on the Wilson-0 method in
Scction 7 or the approximate closed-form solution in Section 8.

7. DYNAMIC ANALYSES BASED ON THE LINEAR ACCELERATION METHOD

Since eqn (22) is in a coupled form, the solution is presented from the numerical
computations. Multiplying both sides of eqn (22) by f,.(x, y) and integrating between 0 to
/. and 0 to /,, eqn (22) reduces to

Qi (1)
aphg

—f—— ‘Smn? 6nﬁd>mn} =
pho

i i { ’n‘vﬁmn [(‘f’nm + wr::m (D,,,,,] + (23)

m=ln=|

in which the notations K,m.. Q:(f) and a are defined as
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1, h
Koirn = OO — —= 3 ¥ ( ’) Fumoi DF,(n i) (24)
a 7 tp=1 h”
(S
Q,..(1) = j j plx. v ) Ll ) dae dy (25)
0 0
(M,
a = f [ S X ¥} fon{x. v) d dy (26)
i3 {

in which the non-dimensional quantities F (m. m: ) and £ (n. n.j) are defined as

N

Fim.m iy = ff D(x— X)) fomfom dX 27
v S
1%

Fy(n.iij) = ,f Dy =3, fonfos dr. (28)
v Jo

The notations f,,, and f,, are the x and ¥ components of /£, respectively. Equation (23)
can be solved by using the Wilson-U method. The curreat natural functions /,..(x, +) take
eqn (16) for a simply-supported plate with voids and eqn (20) for a clamped plate with
voids.

8. CLOSED-FORM APPROXIMATE SOLUTIONS FOR FORCED VIBRATIONS

The dynamic analysis for a damped plate with voids has been presented by means of
the lincar aceeleration method. Then, for practical use, consider an approximation of the
closed-form solution for a damped plate with voids.

The dynamical response of a plate with voids is obtained by solving egn (23). Since
the coctlicients K., in eqn (23) have non-diagonal terms m # 0t and/or # # A due to the
ctfect of the voids, eqn (23) takes on a coupled form. Assuming that the behavior of a plate
with voids is now dominated by the diagonal terms in the coceflicients K. €qn (23)
becomes of an uncoupled form. The effectiveness of the assumption used here has been
numerically demonstrated in the presentation of the approximate solutions for natural
frequencics of a plate with voids. Thus, eqn (23) can be approximated as

o [ . Qnm(l)
b,.()+ b, () +l,®,, (1) = —"" 29
" "( ) ph()Knmmn "”( )+ P ””( (l[’h“ Kmmnn ( )
Now, the dumping constants, i*, are defined as
¢
= 2r*w,,,.
I’I'u Knmmn ’ (30)

They include the effect of the voids since the term K., includes the effect of the voids.
The relations between the damping constants, i*, and usual damping constants, /1, excluding
the effect of the voids, are given by

/7 = ll* A’"‘""ln (3 ' )

in which /4 is defined as
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— = 2hw,,. (32)
phy

The damping constants, #*, depend on the values of m and n. Hence the substitution of
eqn (30) into eqn (29) results in

5 H 2 an
Y},% - =
D (1) + 28* 0y O (1) + 07 D (1) T (33)
The general solution of eqn (33) is
D, (1) = exp (—h*w,,.1)[C, sin Wpp,t + C; €OS Wpp,l]
l ! . .
- - - - J4
b J; exp [ = h* W,y (t = T)] SIN Wppmp(t = T)Qn (1) T (34)

in which w,,, are the natural frequencies of the undamped plates with voids ; and wy,,, are
the natural frequencies of the damped plates with voids. The relationship between w,,,, and
)y 1S

“)I)mn = Upn \,/l—_ h* :' (35)
Hence the dynamic deflections of plates with voids are determined by substituting eqn (34)
into eqn (21).

Next, consider the dynamic solutions of a plate with voids, subjected to the following
harmonic external load :

Py ) = po(x,y) sinayt (306)

in which p, (x, ») is a function of the external loads, and ), is the frequency of the external
loads. Then the notation @,,,(1) can be written as

Q.. (1) = sin w,tQ,(m, n) (37

in which the Q,(m, n) are defined as

(Y,
Q,(m,n) = f J Do (6 3) frn (v, 1) dx dy. (38)

Ifate =0
w(e,3,0)=0, w(x, 10 =0 (39)
then @, (1) become

O, (1) = »Qp(m, n) ! {/t"a_;,,,,, C(_)sh(m,,l)+(w,,+w,,,,,,,) sin (w,!)

= . 5 . 3
aph() Ammmla)l)nm 2 (h*‘”mn) i (U)p + wl)mn)

h*®,,, cos (w, 1) + (), — wp,,) sin (w,t)

(B W) + (W = W)

(W, + ) SIN (W pnl) ~ Wy COS (W pypmal)
(h‘(’)mn) : + (“)p +(Ul)mn) :

+exp (—h*w,,t) [

(3, — W o) SIN (W ppuat) +I*0,,,, COS (w,,,,,,,t)]}. 40)

(h'u)mn): + ((Up ‘.(I)Dmn) :
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Thus the closed-form approximate solutions for a damped plate with voids have been
presented. The closed-form solution for undamped plates with voids ts given by setting, as
h* = 0. Wppw = Wy and exp (—hA*w,.¢) — 1 in eqns (34) and (40). while the solution for
solid plates without voids is obtained by replacing K., with 1.

9. NUMERICAL RESULTS FOR DYNAMICAL RESPONSES: DISCUSSIONS

To examine the approximate solution proposed here for an isotropic rectangular plate
with voids. numerical computations were carried out for three cases. as shown in Table 1.
The data used are as follows: Young's modulus £ = 2.1 x 10" tfm ™" (2.987x 10°lbin~7);
Poisson’s ratio v = 0.17; thickness /1, = 0.3 m (0.984 ft) : span lengths /, =/, = 10 m (32.808
ft) : voided ratio A, ,/hy = 0.5; and mass density p = 244.9 kgf s* m~* (4.660 b s° ft ).
The external lateral load is assumed to be a harmonic and uniformly-distributed force given
in eqn (36), in which p,.(x.¥) = 0.15tf m * (30.7Ib ft "*) and @, = w,, 2. Here vy, is the
first natural frequency for solid plates without voids.

Figures 13-15 show the dynamic deflections at the midpoint of simply-supported plates
with voids of Types 1-3. respectively. while Figs 16-18 show the dynamic deflections at the

Wllson-§ method
- — — Closed-form solution
—&~— NASTRAN

0.00234

- LA
SR

-0.00234

0 0.2 0.4 0.6 0.8 1.0
TIME (sec)

Fig. 13. Dynamic deflections w for a simply-supported plate with voids (Type ).

Wilson-8 method
Closed-form solution
—- NASTRAN

0.00242

o T
J\:

-0.00242+

0 0.2 0.4 0.6 0.3 1.0
TIME (sec)

Fig. 14. Dynamic deflections w for a simply-supported plate with voids (Type 2).
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Wilson-@ method
-—— (losed-form solutfon
—8— NASTRAN

0.00246 |

o l
o/

-0.00246 +

0 0.2 0.4 0.6 0.8 1.0
TIME (sec)

Fig. 15. Dynamic deflections w for a simply-supported plate with voids (Type 3).

Wilson-8@ method
= = = Closed-form solution

Q- NASTRAN
0.000836
N \
w (m) 0 7 M/ ‘Q !
-0.000836
0 0.2 0.4 0.6 0.8 1.0
TIME (sec)

Fig. 16. Dynamic deflections w for a clamped plate with voids (Type 1).

midpoint of clamped plates with voids of Types 1-3, respectively. In these figures, the solid
lines indicate values obtained from the numerical computations using the linear acceleration
method ; the broken lines indicate values obtained from the closed-form approximate
solution; and the solid lines with circles indicate values obtained from the FEM code
NASTRAN. The numerical results show that the closed-form approximate solution pro-
posed here is applicable to the dynamic analyses of plates with voids, in practical use.

The limitation of the ratio #,,/h, in the proposed theory on natural frequencies has
already been stated as being smaller than 0.6. This limitation is also effective for dynamic
plates with voids, subjected to forced vibrations, because the inaccuracy of the natural
frequencies results in an incxact dynamical responsc.

On the other hand, the limitation of the ratios b,;//, and b,/l, is not clear. They are
restricted by the shear forces and the validity of the Kirchhoff-Love plate theory. West
(1973) suggests that cell distortion of a plate with voids should be taken into account when
the void area exceeds 60% of the total cross-section.

For the sake of simplicity, this paper disregards the transverse shear deformation and
the local deformation of the top and bottom platelets of the void. It will be necessary to
consider these deformations when the cross-section and/or number of voids increases. The
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—— W{lson-@ method
— — = (losed-form solution

—Epm NASTRAN
0.000779 +
L
w (m} 0 ‘ \
-0.000779 -
0 8.2 0.4 0.6 0.8 1.0

TIME {sec)
Fig. 17. Dynamic deflections w for a clamped plate with voids (Type 2).

—e WiisON-§ method
— — - (losed-form soiution

—O— NASTRAN
0.000766
w (m) O M M —
-3.000766+
0 0.2 0.4 0.6 0.8 1.0

TIME (seC)

Fig. 18, Dynamic deflections w for 4 clamped plate with voids (Type 3).

transverse shear deformation can be considered by replacing the Kirchhofl-Love plate
hypotheses with the Mindlin plate theory.

Each void was assumed to be a rectangular parallclepiped for simplicity’s sake, but it
is relatively casy to extend the proposed theory to a void with circuliar or symmetric cross-
section.

10. CONCLUSIONS

The genceral analysis methods and closed-form approximate solutions for free and
forced vibrations of an isotropic rectangular plate with arbitrarily-disposcd voids have been
proposed by means of the extended Dirac function. The closed-form solutions proposed
here have been validated by comparing them with the numerical results obtained from the
lincar acceleration method proposed here and from the FEM code NASTRAN and with
the experimental results.
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APPENDIX. INTEGRAL CALCULATION INCLUDING THE EXTENDED DIRAC FUNCTION
The integral caleulation including the extended Dirac function D(x —x,) for a given function /() can be

written as

a HERLD
J Dx—=x) f(x)dy = J [dx =) f(x) dx] ds
i )

v Yotk Y

DERLIWR]
= J JANKN (Al)

Lt
in which § is a supplementary variable of x. Similarly,

1, AALIE]
J‘ Dy =)/ (y) dy =I S dy (A2)
l [P J]

in which n is « supplementary variable of 3. The ath derivatives of the extended Dirac functions can therefore be
cxpressed as

', Leth N
I D (x=x)f(¥) dv = j (=DY"O s

» LIS}

1, AL
f D" (y =y /() dy = I (=D () dn (AJ)

4 R LI
in which superseripts enclosed within parentheses indicate the differential order.
When the conditions b,,, « 1, and b, « [, are satisfied, the extended Dirae functions D(x —x,) and D(y -y,)

arc approximately related to the Dirac functions d(x —x,) and 8(p —y,) in the following way:

Dix=x)=sb, 5(x=x)
Dy=-y)=b, =) (A4)

SAS 28:7-G



