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Abstract-A general analytical method for the dynamic response ofan elastic plate with arbitrarily­
disposed voids is proposed by means of the elttended Dirac function. The discontinuous variation
in rigidity of the plate due to the voids is eltpressed under the category of a continuous function by
the use of the elttended Dirac function. The governing equation of motion for a damped plate with
voids is formulated without modifying the rigidity of the plates. The treatment is independent of
the equivalent plate analogy. First. natural frequencies for a plate with voids are presented by means
of the Galerkin method. The validity of the proposed natural frequencies is shown for simply­
supported and clamped plates with voids through a comparison with both the results of an eltperi­
ment using acrylic plates and the results obtained from the FEM code NASTRAN. &:cond. a
dynamic analysis method based on the linear a\.-celeration method is presented from the governing
equation. The closed-form approltimate solutions for a damped plate with voids are proposed for
general and harm{lnic elttern;11 loads. The validity of the cklsl-d-form approltimate solutions pro­
posed here is shown by a comparison with the numerical results {l"tained from the linear ;K"Ccleration
method and NASTRAN.

NOTATION

II

h",J' hV'J..
D(x-x,). D(y-y,)

0"
d(x.y)
E
F. u ("'. ,;,; I). F",(n, Ii; J)

f ....
f~ .. f.,

""h·
h
h

h",
I,. I,
p
Qp. Q....
w
:l

e5(x - x,). cS(y - Yj)
e5....
v
p
«11_
UJ_. (1),,­

W,

W ..

IJJp

the value of the integmted natural functions
the widths in the x allli y din:ctions of the i. jth void. respectively
damping eoellicient
c~tellded Dirac functions
llcltural rigidity fur ;1 solid plate withuut voids
rigidity ratiu of pl;ltes with voids to plates withuut voids
Yuung's modulus
integral values
natural functions
x and y components of f ....
tot;llthickn\.'Ss of plate
damping constant including the effect of voids
damping constant eltcluding the elTect of voids
practical thickn\.'Ss of plate
height of the i. jth void
span lengths in the :c and y dir\.-ctions
external lateral loads
integral values of the cltternal loads
lateral dellt.-ction on thc middle surface
ratio of span lcngths I, to I,
Dirac functions
Kront.-cker delta
Poisson's ratio
mass densily of a plate with voids
functions of time
natur;11 frequencies uf undamped and dampt.-d plates with voids, respt.-ctively
ith nalural frequency of voidt.'d plates
ith natural frequency of solid plates
frequency of elttcrnalloilds.

I. INTRODUCTION

For reasons of lightness and structural efficiency and in order to guarantee enough space
for equipment, plates with voids are often used in floors. roofs, bridges, etc, There are many
papers discussing the analytical method for static plates with voids [for example. Holmberg
(1960), Sawka and Cope (1969). Crisfield and Twemlow (1971), Cope et 01. (1973). Elliott
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Fig. 1. Coordinates of a rectangular plate with voids.

(1978). Elliott and Clark (1982) and Cope and Clark (1984)]. However. a general analytical
method for plates with arbitrarily-disposed voids has not been established. The author
(Takabatake. 1991) has presented a general analytical method for such a static plate with
voids by the use of an extended Dirac function. The extended Dirac function is defined as
a function in which the Dirac function exists continuously in a prescribed region. For the
current problem. the extended Dirac function has a value in the region where the voids
exist. and replaces the discontinuous variation in the rigidity of the plates due to the voids
with.1 continuous fUI1l:tion ; it is therefore eflcctive in presenting a general analytical method
for plates with aroitrarily-disposed voids. The theory of plates with voids is formulated
without modifying the rigidity of the plates. This treatment is independent of the equiv.t1ent
plate amllogy. The author (Tak'loatake. 19K7. 19XX) has demonstrated the cflcctiveness of
the extended Dirac function for analyses of tuoe structures with floors and of lateral
buckling of I be.lms stiffened with stiffeners.

Dynamic problems for a plate without voids were studied by Chu and Ilermann (1956)
and Gorman (1982). The analysis of a dynamic pl'lte with arbitntrily-disposed voids is
based on FEM. whereas the general analytical method is scarce.

The purpose of this paper is to present a general dynamic analysis of the dynamic
responses of a rectangular plate with arbitrarily-disposed voids. First. the governing equa­
tion of motion for a damped plate with voids is presented by modifying the author's result
(Takabatake. 1991) for static plates with voids. The discontinuous variation in the rigidity
of the plates due to the voids is expressed as a continuous function by means of the extended
Dirac function. Second. the natural frequencies of a rectangular plate with voids are
presented by means of the Galerkin method. The proposed solutions arc examined by
comp'lring them with experimental results using acrylic plates and with results obtained
from the FEM code NASTRAN for simply-supported and clamped plates with voids.
Third. the forced vibrations of a damped plate with voids are presented by the usc of the
linear acceleration method. For practical usc. the approximate solutions for a plate with
voids. subjected to general and harmonic external loads. are proposed in closed form. Last.
the validity of the closed-form solutions proposed here is shown by comparing them with
the numerical results obtained using the linear acceleration method and using the FEM
code NASTRAN.

2. FUNDAMENTAL EQUATION Of PLATES WITH VOIDS

Consider a rectangular plate with arbitrarily-disposed voids. as shown in Fig. I. The
plate is assumed to be composed of an isotropic material. Assume that each void is a
rectangular parallelepiped whose ridgelines are parallel to the x- or -,,-axis and which is
disposed symmetrically with respect to the middle plane of the plate. as shown in Fig. 2.
The position of the i.jth void is indicated by the coordinate value (x; •.lj) of the midpoint
of the void; the widths in the x and y directions of the void are h'i.} and b,i.}. respectively;
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and its height is h'.i' The size and position of each void are arbitrary eltcept for the above­
mentioned assumptions.

Consider the bending problems of an isotropic plate with voids in small deformations.
Since for structures like floors, roofs and bridges the height of the voids is relatively small
in comparison with the thickness of the plate, the Kirchhoff-Love plate theory may be
assumed to be valid for the current problem. It is also assumed that deflections of the
supporting ends of the plates with voids do not occur when eltternal loads are applied
dynamically. Adding the viscous damping term to the author's theory (Takabatake. 1991)
regarding the st'ltic analyses of plates with voids. the equation of motion of a rectangular
plate with voids can be written as:

I'h(x.y)w+ Cli'+ Do[clw,n + vclw.).vLx +Do[cllV.)'v +vclw..uLvv +2( 1- v) Do (clw..".J.". = p(x,y. t)

(I)

in which Do is the lleltural rigidity for a solid plate defined as EII~/12(1- v2); C is a damping
coefficient; and the thickness, h(x. y). and the rigidity ratio. d(x. y). are given by:

h(x,y) = liD [1- L L h'JD(x-x;)D(y-}j)J
, - 1/_ I

d(x,y) = 1- L L 2,/D(x-x,)D(y-Yj)'
i - 1/ • I

(2)

(3)

Here ho is the total thickness of the plates. and the notations D(x-x;) and D(y-Yj) are
the elttended Dirac functions defined as

D(x-.<.) - {~

D(y-y,l - {~

The notation (J,ii is defined as

b.'IJ b",i
for Xi - T < X < XI + T

for all others

r b)"J b"'J
lorYi- T <Y <Yj+ T

for all others.

(4)
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3. FREE TRANSVERSE VIBRATIONS OF A PLATE WITH VOIDS

The method of separation of variables is employed. assuming that

I<r(x. y. t) = W(X. y)<I>(t)

(5)

(6)

in which W(x. y) is a function of x and y. <I>(t) is a function of time t. Applying eqn (6) to
the equation for free transverse vibrations obtained from eqn (I). the two equations satisfied
by W(x. y) and <I>(t) follow:

$( t) +w :(1)( t) = 0 (7)

w~plt(x. r)
[elW."Lf + [elW ..l ..·+ v[elW. IT I. .. +1'[elW" 1... + 2( 1- v)[ciW.f.ln - Do' = 0 (8)

in whidl (I) is a constant.
The natural frequencies of a plate with voids are presented by means of the Galerkin

method. W(x. y) is expressed by a power series expansion as follows:

W(x.y) = L L W",..{,,,,,(x.y)
III - I" - I

(9)

in which W",,, ,Ire the unknown coelliciel1ls. I""(x• .1') ,Ire functions satisfying the specified
houndary conditions of the plales. The Galcrkin el]uations of eqn (8) can be written as

() ~V",,,; L L ~V",,,[A,,.,,j,,,,, - ;.B,,.,,inr,,] = 0
In - In .. I

in whieh the notations A,,.,,;,,,,,. B"";",,, and ;. are defined as

A"";",,, = f" fl. {[elf;"".,,!.., + [«(/;"", ...1.... + 1·[clj;"".)'I1..
o 0

+ I'[c(/;""... !.,.. +2( I -I')[cifnrn.<.']''''} 1m,; dx dy

I f"f"[ ]B";,;",,, = I~ 1- L L h,.,D(x-x,)D(Y-Yj) Im"/mridxdy
, 0 U t .. I,,, I

( 10)

( II )

( 12)

( 13)

where the integral calculation including the extended Dirac functions. D(x-x,) and
D(y - .1'). is shown in the Appendix. Equations (10) are a system of linear. homogeneous.
simultaneous algebraic equations with respect to the unknown displacement coefficients
W",,,. The coellicients B,,.,,;,,,,, appear in diagonal and non-diagonal terms due to the existence
of the voids. Solving eqns (10) as eigenvalue problems for ;,. the ith natural frequency. OJ,.

of a plate with voids. corresponding to the ith value. ;.;. of ;.. is determined from eqn (13)
as
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( 14)

The natural frequencies of a plate with voids are now obtained from numerical com­
putations. Then, approltimate eltpressions to directly obtain the natural frequencies are
considered. Although the natural frequencies are affected by the diagonal and non-diagonal
terms in the square matrices Am';"," and Bm;;",", the main behavior is now dominated by the
diagonal terms. Hence, taking only the diagonal terms in Am;;"," and Bm;;"," into consideration.
eqns (10) become of an uncoupled form. Thus the approximate values of ;. are obtained as

( 15)

The approltimate value for the ith natural frequency is obtained by substituting this into
eqn (14).

For simply-supported plates using the following natural functions:

I1lTtX flTtI"
!","(x,y) = sin-,- sin -,_..--

.\'" ,.

the coefficients Am""'" and Bm""," are

[(n)l 2n][n _. fl _.] _,-2 ~ +m ~ ~FJ,.u(fI,n,j)-~F",.,.(n,n,j) Fw(m,m,/)

+2(1- v)m~ [mft.u(m,t;l; I) -t;IFtce(m,I;I; I)) [~F".u(fI"i;j) +: F.....<fI.,i;j)]]

( 16)

( 17)

( 18)

in which oc = ',.fl.,; ~",m and ~"" are the Kronecker deltas; and the notations F,.•• (m, In; I)
and Fuc(m, m; I) are defined as
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(m+nl)rr I, _I,

The notations F,.,,(n, Ii ;j) and Fm.(n, ii :j) were obtained by making the substitutions m -+

n, ,F, -+ ii, x, -+ )'" b.,./ -+ b ll .; and I, -+ I,. in eqn (19). On the other hand, the natural
frequencies for clamped rectangular plates with voids were obtained similarly by using
suitable natural functions for clamped solid plates.

4. NUMERICAL RESULTS FOR NATURAL FREQUENCIES

The natunll frequencies for a plate with voids have been presented by means of the
Galerkin method. In order to examine the natural frequencies proposed here, numerical
computations were carried out for three cases, as shown in Table I. All the voids have the
same cross-section spaced equally. Figures 3-5 and 68 show the tirst natural frequencies
for simply-supported and clamped plates with voids. respectively. in which Poisson's ratio.
\', is 0.17: the width ·-span ratios, h,,)I, and hr,)I,., of the i, jth void take the values 0.05.
0.10 and 0.15: the ratios ",..1"0 change from 0 to 0.9; and the aspect ratio. l,Il" is always
1.0. The value at ",..1"0 = 0 indicates the value for normal solid plates without voids. In
these ligures each lirst natural frequency, (t},. is divided by the first natural frequency, WOI.

of the solid plates. The numerical rcsults show that the dillcrences between the results
obtained using eqn (10) and the approximate results obtained using elJn (15) arc too small
to plot .md an.: negligible in practical usc. The results obtained from the proposed theory
show excellent agreement when compared with results obtained from the FEM code
NASTRAN. in which 22 x 22 finite clements are used. However. the ratio h,)ho in these
ligures must be restricted to being smaller than 0.6 due to the usc of the Kirchhoff-Love
assumption made here. In this calculation. the natural funl:tions for lixed plates with voids
usc. for the sake of computational simplicity. the following approximate expressions:

Table I. Lisls of isotropic n:ctangular plates with voids

iM'E i; i;i~ tt:~PLANE SECTION J,

~ilii"~
h"j
~I-I-,

1 "or;1 00&00 I~
05 0·1 0·5 1·0-1'-

b.i.j
vt . "''I
• f- ~,-l -,

2 . . by"1 "Q ...:' 00000 I~ 0·5 0·1 1·0 1·0
. ! -11-

v. b.,.j

1".••. !~
hi.,
~_t._,..... , ~...:Icccccl....::

0·5 0·1 10J ••••• byi.j 0·1•••• _11_••••• b'i.j
v.
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Fig. 9. Convergem:e of linite elements with mesh refinement.

. (It.\') . (mnx) . (It\') . (nnv)f","(x.y) = Sin 7,- Sin T Sin t Sin ~ . (20)

If the well-known exact natural functions for normal plales are used. lhe results of the
numerical computation for fixed plales with voids will be improved.

Figure 9 shows the convergence of the finite clements with mesh refinement on the
natural frelJuencies of the simply-supported plate with voids. named Type 3. and the solid
plate. It follows that the 22 x 22 elements lIsed in the aoove comparison arc uppropriate
for good convergence.

For higher nutural frelJuencies lhe proposed theory ulso shows good ugreement with
the results ohtained from NASTRAN. The higher natuml frequencies increase in proportion
to the im:rease in the ratio h,)h ll • The behavior is the same as the first natural frequency
for h,)hu sm.tller than 0.6. except for the second. fourth. etc. natural frequencies of simply­
supported plates and fixed plates numed Type I. These dil1crences arc causcd whcn the
natural modes of Type I arc asymmetric with respect to a line given by .I' = f../2 which
passes through the midspan. as shown in Fig. 10. For these modes of Type I the position
of the voids is such that they occur on .t part of. but not throughout. the span of the plate
with respect to the line y = /./2. Therefore. the ctfects of the voids on these natural modes
cancel each other. and the increment of these natural frequencies due to the voids is less
than for the other modes of Type I and other types. Figure II shows the second natural
frequency for simply-supported plates with voids.

5. RELATIONSlllrS BETWEEN THEORETICAL RESULTS AND ExrERIMENTAL RESULTS
FOR NATURAL FREQUENCIES

In order to examine experimentally the theory proposed here. experiments for acrylic
plates with voids were carried out for both simply-supported and clamped cases.

The experiment.tl equipment is shown schematically in Fig. 12. The span lengths
/, = I,. = 30 em (11.81 in). The material constants arc Young's modulus £ = 32.700 kgf
em -2 (465.10010 in'2). Poisson's ratio v = 0.34. and mass density p = 1.199 x 10 h kgfs2

em - 4 (1.096 x 10- III 10 s 2 in - 4). The natural frequencies 'lre calculated from the dynamical
deflections at the midpoint of the specimens. The relationships for the first natural frequency
between the experimental results and the theoretical results proposed here arc shown in
Tablc 2. It shows that the proposed theory agrees well with the experimental results. Thus.
although the specimens are insufficient in number. it is shown that the proposed theory can
apply in practice to plates with voids.
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Fig. 10. Frcllucm:y modcs of simply-supportcd pl,llcs with voids.
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Fig. II. The second natural frequency of a simply-supported platc with voids (Type I).

6. FORCED VIBRATIONS OF PLATES WITH VOIDS

Free transverse vibrations of a plate with voids have been presented. Next, forced
vibrations of plates with voids will be considered. The general solution ofeqn (1) is assumed
to be of the form
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Table 2. Rdationships between the theoretical and experimental results

First natural frequencies
Type h,)h" b...,II, h,.,.,II,. Simply-supported plate Clamped plate

Experiment 120.8 rad S-I 1296.3 rad S-I

0 0 0 0 Theory 666.5 rad s - I 1257.8 rad s- 1

Error 7.5% 2.9%

Experiment 746.3 rad s - 1 DoW.8 rad s - I

0.33 0.1 0.5 Theory 738.2 rad s - 1 1"39.4 rild s - I

Error 1.0% -7.0%

Experimcnt 755.7 rad s - 1 1320.9 rild s - I

2 (U3 0.1 1.0 Thcory 75S.5 rad s . 1 H64.7 rad s - I

Error -0.4% -IO.S%

Expcrimcllt 129.0 rad s' I 1399.0 rad s - 1

3 0.33 0.1 0.1 Thcury 123.9 rad S·I 1423.2 rad s . I

Error 0.7% -1.7%

Error = (Experimcnt - Thcoryl/(Experimcnt); CI = /../1, = 1.0; I, = 30 em; and h" = 0.6 cm

\I'(X,y. f) = L L Im"(x.y)(llm"(t)
m - lit - I

(21)

in which <J>m(t) are unknown functions of time t; and the functions Im"(x. y) are the natural
functions satisfying both the dilTerential eqns (8) and the specified boundary conditions at
the ends of the plate. Substituting eqn (21) into eqn (I) and using the eqn (8), we have

L L

L L J~,"(,'(, y)[pll(x. y)ili,""(t) +c(bm" (f) +pll(x. y)w,~"(llm"(t)l = p(x, y. f). (22)
m - I It - I

Since the thickness lI(x, y) is a function of x and y. eqn (22) cannot be transformed into an
uncoupled form by means of the orthogonality relations for natural functions. Therefore.
eqn (22) will be solved by either numerical computation based on the Wilson-O method in
Section 7 or the approximate closed-form solution in Section 8.

7. DYNAMIC ANALYSES BASED ON TilE LINEAR ACCELERATION METHOD

Since eqn (22) is in a coupled form. the solution is presented from the numerical
computations. Multiplying both sides of eqn (22) by fmi/(x, y) and integrating between 0 to
I.. and 0 to I.... eqn (22) reduces to

(23)

in which the notations K';'ri"'"' Q,;,ri(t) and a are defined as
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(2-l )

(25)

(26)

in which the non-dimensional quantities F,(m. til: i) and F.. (1I. 11 :1') arc defined as

I fl ..
F1·(nJi ;/) = ,-- D(y - y')/;·"/;.ri dy.

r 0

(27)

(28)

The notations 1m. and /." are the x and y components of .f;"". respectively. Equation (23)
can be solvcd by using the Wilson-O method. The current natural functions ./;",,(... .1') t.tke
c\.ln (16) for a simply-supported plate with voids and e\.lll (20) for a clamped platc with
voids.

H. CLOSED·FORM API'ROXIMATE SOLUTIONS FOR FORCED VIBRATIONS

The dynamic analysis for a damped pl<lte with voids has been presentcd by means of
the linear m;cderation method. The..:n. for practical liSe..:. consider .In .Ipproximation of the
closed-form solution for a damped plate..: with voids.

The dynamic'll response of a plate with voids is obt.lined by solving eqn (23). Since
the coetlidents K,inl",,, in e\.ln (23) havc non-diagonal terms m :f. Ii'I and/or 11 :f. Ii due to the
ctfect of the voids. cqn (23) takes on a coupled form. Assuming thut the beh'lvior of a plate
with voids is now dominated by the diagonal te..:rms in the coetlidents K'ilri"'''' c\.In (23)
be..:comes of an uncoupled form. The etfective..:ness of the assumption used here has been
numerically demonstrated in the presentation of the approximate solutions for nutuml
fn:quencies of a plutc with voids. Thus. e\.ln (23) can be approximated as

:i- c. > Q",,,(t)
'V",,,(t) + -,--p~..-·(I>",,,(t)+w,;,,,(l)m,,(r) = ._,"j(----'

P I () "'nUl/ntt {/P 1(J """,m

Now. the damping constants, h*. arc defined as

(29)

(30)

They include the effect of the voids since the term Kmnmn includes the effect of the voids.
The relations between the damping constants. h*. and usual damping constants. Ii. excluding
the effect of the voids. are given by

(31 )

in which II is defined as
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(32)

The damping constants, h·, depend on the values of m and n. Hence the substitution of
eqn (30) into eqn (!9) results in

(33)

The general solution ofeqn (33) is

(34)

in which W m " are the natural frequencies of the undamped plates with voids: and (J)D",. are
the natural frequencies of the damped plates with voids. The relationship between OJ",. and
Wo",,, is

(35)

Hence the dynamic dellections of plates with voids are determined by substituting eqn (34)
inlo elln (21).

Next, consider the dynamic solutions of a plate wilh voids, subjected to the following
harmonic external load :

I'(X.Y.l) =1' ... (x• .1') sin W p l (36)

in which 1' ... (x. .1') is a function of the eXlernalloads, ,\Ild w" is the frequency of the eXlernal
loads. Then the notation Q..,,(I) can be written as

in which the QI,(III, ,,) arc ddined as

fl'fl.'
QI.(III.") = 1' ..,(x, .1')/,,,,, (x•.1') dx dy.

U lJ

Ifatl=O

II'(X,Y.O) = o. li'(x. y. 0) = 0

then <[)",,,(I) become

".(1)",,, cos (w"t) + (w" -w"",,,) sin (w"t)
-------(j;.~;:)~+(~l)~~;;;~=r---

[
(OJ" +w o",,,) sin (w"",,,t) - ".(1)",,, cos (w"",,,t)

+exp (-"·CtJ",,,I) -----------..----,' ,
(" w",,,)-+(W,,+WDm,,)-

+ (w" -(1)0",.) :in (U~om"t) +h.~/}~,,~~os«(I)om,,!lJ}.
(h OJ",,,) + (w" -wo",,,)

(37)

(38)

(39)

(40)
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Thus the closed-form approximate solutions for a damped plate with voids have been
presented. The c1osed·form solution for undamped plates with voids is given by setting. as
h* -+ O. (')Om. -+ W m• and exp (-h*wm.t) -+ I in eqns (34) and (40). while the solution for
solid plates without voids is obtained by replacing Kmnm• with I.

9. ~LTMERICAL RESULTS FOR DY:-JAMICAL RESPO~SES; DISCUSSIO:-JS

To examine the approximate solution proposed here for an isotropic rectangular plate
with voids, numerical computations were carried out for three cases, as shown in Table I.
The data used are as follows: Young's modulus E = 2.1 X 10" tf m - ~ (2.987 X 106 lb in -~) ;
Poisson's ratio \. = 0.17; thickness hI) = 0.3 m (0.984 ft); span lengths I, = II = 10 m (32.808
ft); voided ratio hi.J/1z1) = 0.5; and mass density II = 244.9 kgf s~ m- 4 (4.660 Ib s~ ft-4).

The external lateral load is assumed to be a harmonic and uniformly-distributed force given
in eqn (36), in which p,,(x, .1') = 0.15 tf m - ~ (30.7 lb ft ~) and w p = WI) ,2. Here Will is the
first natural frequency for solid plates without voids.

Figures 13-15 show the dynamic deflections at the midpoint of simply-supported plates
with voids of Types 1-3, respectively. while Figs 16-18 show the dynamic deflections at the

-- Wilson-a method

- - - Closed-form solution

---e- NASTRAN

0.00234

w (m) 0fR--~~-~-+--\-If--+--'1~---I--t--\----;H

-0.00234

1.00.80.60.2o 0.4

TIME (sec)

Fig. 13. Dynamic del1eetiuns Ii' fur a simply-supported plate with vuids (Type I).

-- Wilson-a method

-- Closed-form solution

~ NASTRAN

w (m)

o 0.2 0.4

TIME (sec)

0.6 0.8 1.0

Fig. 14. Dynamic deflections Ii' for a simply-supported plate with voids (Type 2).
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-- Wllson-e method

-- Closed-form solution

~ NASTRAN

0.002116

w (m) 01-J'l-----4~---1~_+----\r_i--_+_-___4---_I__+_'lt__--~

-0.00246

o 0.2 0.11

TIME (sec)

0.6 0.8 1.0

Fig. 15. Dynamic deflections II' for a simply-supported plate with voids (Type 3).

-- Wllson-e method

- - - Closed-form solution

~ NASTRAN

1.00.80.60.2 0.11

TIME (sec)

Fig. 16. Dynamic deflections", for a c1amp..-d plate with voids (Type I).

o

midpoint of clamped plates with voids of Types 1-3, respectively. In these figures, the solid
lines indicate values obtained from the numerical computations using the linear acceleration
method; the broken lines indicate values obtained from the closed-form approximate
solution; and the solid lines with circles indicate values obtained from the FEM code
NASTRAN. The numerical results show that the closed-form approximate solution pro­
posed here is applicable to the dynamic analyses of plates with voids, in practical use.

The limitation of the ratio h,,,/ho in the proposed theory on natural frequencies has
already been stated as being smaller than 0.6. This limitation is also effective for dynamic
plates with voids, subjected to forced vibrations, because the inaccuracy of the natural
frequencies results in an inexact dynamical response.

On the other hand, the limitation of the ratios b,;/I" and b,,/I,. is not clear. They are
restricted by the shear forces and the validity of the Kirchhoff-Love plate theory. West
(1973) suggests that cell distortion of a plate with voids should be taken into account when
the void area exceeds 60% of the total cross-section.

For the sake of simplicity, this paper disregards the transverse shear deformation and
the local deformation of the top and bottom platelets of the void. It will be necessary to
consider these deformations when the cross-section and/or number of voids increases. The



-- Wllson-e method

- - - Closed-form solutIon

-e- riASTRAN

\Of (ml

o 0.2 0.4 0.6

TIME (sec)

0.8 1.0

Fig. 17. Dynamic deflections ". for a clamped plale with voids (Type 2).

- Wllson-e methOd

- - - Closed-form solutIon

-e- NASTRAN

0.000766

\Of 1m} 0 JIGo--+--f

-0.000766

1.00.80.2 0.4 0.6

TIME (sec)

Fig. IK. Dynamic dcl1l:ctions ... for a clamped plate with vuids (Type Jl.

o

transverse shear deformation can be considered by replacing the Kirchhoff-Love plate
hypotheses with the Mindlin plate theory.

Each void was assumed to be a rectangular parallelepiped for simplicity's sake. but it
is relatively easy to extend the proposed theory to a void with circular or symmetric cross­
section.

10. CONCLUSIO:-';S

The general analysis methods and closed-form approximate solutions for free and
forced vibrations ofan isotropic rectangul.tr plate with arbitrarily-disposed voids have been
proposed by means of the extended Dirac function. The closed-form solutions proposed
here have been validated by comparing them with the numerical results obtained from the
linear acceleration method proposed here and from the FEM code NASTRAN and with
the experimental results.
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APPENDIX. INTEGRAL CALCULATION INCLUDING HIE EXTENDED DIRAC FUNCTION

The intcgral calculation including the extended Dirac function n(\ - x.l for a given function {(x) can be
written as:

in which ~ is a supplementary variahIe of x. Similarly.

I, f"'" ·1,, lJCr - y,)/(y) dy = • "J /(tll dtl
U j"j «"r',I" 11

(A I)

(A2)

in which tl is a supplementary variahie of y. The nth derivatives of the extended Dirac functions can therefore be
expressed as

I, f' ,,'1,
'[)'.'(x_x.l/(x)dx= ' "I (-I)Of'o'Wd~

U " -lh"J 1,

I
, f' "h .1,
, D'o,(y -y,)f(y) dy = I "J (_ I )"po, (til d'1

u t'! -lh"J' 11

(A3)

in which superscripts enclosed within parentheses indie:lte the differential order.
When the conditions hl/.J « I, :ll1d h"., « I, arc satisfied. the extended Dirac functions lJ(x - x,) and [)(y - .r,)

arc approximatdy related to the Dirac functions J(x - x,) and 6(y - y,) in the following way:

SAS 28:7-0

nIx-x,) =; h".,.>(x-x,)

[)(y-y,) =; h"J'>(y-y,). (M)


